Tag Archives: peek bearing

China Standard CNC High Performance Peek Plastic Part Products Polyetheretherketone1000 Bearings connecting rod bearing

Product Description

High Performance PEEK Polymer Profiles and Parts Manufacturer and Service Provider

 

Product Description

PEEK(Polyetheretherketone)is a kind of heat-resistant, high performance thermoplastic special engineering plastics. It has good mechanical properties and chemical resistance, abrasion resistance, and hydrolysis resistance properties etc.; it has a light proportion and self-lubricating properties.

 

1. Excellent dimensional stability

2. Low coefficient of linear thermal expansion

3. Good mechanical properties at elevated temperatures

4. Good resistant to hot water and steam

5. Bearing grade PEEK has excellent wear characteristics

6. UL 94 V-0 flammability rating (0.059″ thickness)

7. Very low smoke and toxic gas emissions when exposed to flame

8. Outstanding mechanical properties even at high temperatures
9.Optimized balance of stiffness, tensile strength and impact strength.

10.Continuous operating temperature up to + 260°C and briefly even up to +300°C.

 

GuangZhou Engineering Plastics Industries (Group) Company, has studied and applied this material in many industries for many years. Due to very good processing properties, it can be filled with carbon fiber, Fiberglass and MoS2 etc. In order to improve lubrication performance and mechanical strength further.

 

1.PEEK-1000 This general purpose grade is unreinforced and offers the highest elongation and toughness of all PEEK grades. The newly available black PEEK 1000 is ideal for instrument components where aesthetics are important, as well as for seal components where ductility and inertness are important.

2.PEEK-HPV Carbon fiber reinforced with graphite and PTFE lubricants,our newest grade of PEEK offers the lowest coefficient of friction and the best machinability for all PEEK grades. Anexcellent combination of low friction,low wear,high LPV,low mating part wear and easy machining,make it ideal for aggressive service bearings.

3.PEEK-GF30 The addition of glass fibers significantly reduces the expansion rate and increases the flexural modulus of PEEK. This grade is ideal for structural applications that require improved strength, stiffness or stability,especially at temperatures above 300°F (150°C).

4. PEEK-CA30 The addition of carbon fibers enhances the compressive strength and stffness of PEEK, and dramatically lowers its expansion rate. It offers designers optimum wear resistance and load carrying capability in a PEEK-based product. This grade provides more thermal conductivity than unreinforced PEEK – increasing heat dissipation from bearing surfaces improving bearing life and capability.

 

NO.

Item no.

Unit

PEEK-1000

PEEK-CA30

PEEK-GF30

1

Density

g/cm3

1.31

1.41

1.51

2

Water absorption(23ºC in air)

%

0.20

0.14

0.14

3

Tensile strength

MPa

110

130

90

4

Tensile strain at break

%

20

5

5

5

Compressive stress

(at 2% nominal strain)

MPa

57

97

81

6

Charov impact strength(unnotched)

KJ/m2

No break

35

35

7

Charov impact strength(notched)

KJ/m2

3.5

4

4

8

Tensile modulus of elasticity

MPa

4400

7700

6300

9

Ball indentation hardness

N/mm2

230

325

270

10

Rockwell hardness

M105

M102

M99

Color:Natural,Black,Khaki and so on.

PEEK Sheet Size: 500X1000X(Thickness:1-500mm),620X1000X(Thickness:1-500mm) PEEK Rod Size: Φ6-Φ200X3000mm

PEEK Tube Size: (OD)30-600X (ID)20-500X length(500-3000mm)

 

Our Factory

 

Certification

Companies strictly enforce the ISO9001(2008)international quality certification system, the product quality conforms to the eu RoHS standard.

 

Application Area

1. Seals, Gears, Fittings.
2. Electrical components.
3. Medical instrument parts.
4. Aerospace parts, Valve Seats.
5. Semiconductor machinery components.
6. Food processing machinery components.
7. Bearings and bushings (bearing grade PEEK).
8. Pump and valve components, Wafer Carriers, Piston Rings.

 

Our Exhibition

 

Cooperative Case

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Peek
Transport Package: Boxs
Specification: custom
Trademark: gz-plastic
Origin: China
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

plastic bearing

What are the eco-friendly or sustainable aspects of plastic bearing materials?

Plastic bearing materials offer several eco-friendly and sustainable aspects. Here’s a detailed explanation:

  • 1. Recyclability:

Many plastic bearing materials are recyclable. At the end of their useful life, these bearings can be collected, processed, and transformed into new plastic products or materials. Recycling plastic bearings helps reduce waste, conserve resources, and minimize the environmental impact associated with their disposal. This promotes a circular economy and reduces the demand for virgin plastic production.

  • 2. Use of Recycled Content:

Some plastic bearing materials can be manufactured using recycled content. By incorporating recycled plastics into the production process, the reliance on new plastic raw materials is reduced. This helps conserve resources, reduce energy consumption, and decrease the carbon footprint associated with the manufacturing of plastic bearings.

  • 3. Lower Energy Consumption:

Plastic bearings often require less energy consumption compared to metal bearings. This is primarily due to their lower weight, which reduces the energy required for transportation, installation, and operation. Additionally, plastic bearings can operate without the need for external lubrication, eliminating the energy consumption associated with lubrication systems or processes.

  • 4. Reduced Maintenance and Lubrication:

Plastic bearings can offer reduced maintenance requirements and eliminate the need for external lubrication. Unlike metal bearings, many plastic bearings are self-lubricating or have low friction properties, allowing them to operate effectively without the need for regular lubrication. This not only reduces maintenance efforts and costs but also minimizes the use of lubricants, which can be environmentally harmful if not properly managed.

  • 5. Chemical Resistance and Durability:

Plastic bearing materials often exhibit excellent chemical resistance and durability. This enables them to withstand harsh environments and aggressive substances without degradation or the need for frequent replacements. The longevity and resistance to chemical attack reduce the overall environmental impact associated with the production, use, and disposal of plastic bearings.

  • 6. Lighter Weight:

Plastic bearings are generally lighter in weight compared to metal bearings. This lightweight characteristic offers several eco-friendly benefits. Firstly, it reduces the energy required for transportation and installation, resulting in lower fuel consumption and greenhouse gas emissions. Secondly, it can contribute to weight reduction in machinery or equipment, leading to energy savings during operation.

In summary, plastic bearing materials offer several eco-friendly and sustainable aspects, including recyclability, use of recycled content, lower energy consumption, reduced maintenance and lubrication requirements, chemical resistance and durability, and lighter weight. By choosing plastic bearings with these sustainable attributes, industries can reduce their environmental footprint, promote resource conservation, and contribute to a more sustainable and eco-friendly approach to bearing technology.

plastic bearing

What are the potential challenges or limitations of using plastic bearings in specific industries?

While plastic bearings offer numerous advantages, they also have certain challenges and limitations when used in specific industries. Here’s a detailed explanation of the potential challenges or limitations:

  • 1. Temperature Limitations:

One of the limitations of plastic bearings is their temperature limitations. Different types of plastic materials have varying temperature ranges within which they can operate effectively. In high-temperature environments, plastic bearings may experience reduced load capacity, increased friction, or even deformation. Therefore, in industries such as aerospace, automotive, or heavy machinery, where high temperatures are common, alternative bearing materials may be more suitable.

  • 2. Load Capacity:

Plastic bearings generally have lower load carrying capacities compared to their metal counterparts. They may not be suitable for applications with extremely high loads or heavy machinery where substantial forces are involved. Exceeding the load capacity of plastic bearings can lead to premature wear, deformation, or failure. Therefore, in industries that require heavy-duty applications or high load capacities, metal bearings or other robust bearing solutions may be preferred.

  • 3. Speed Limitations:

Plastic bearings may have limitations when it comes to high-speed applications. The speed at which plastic bearings can operate effectively without experiencing excessive friction, heat buildup, or wear is typically lower compared to metal bearings. In industries that require high rotational speeds, such as industrial machinery or automotive applications, alternative bearing materials or specialized designs may be necessary to handle the demands of high-speed operation.

  • 4. Chemical Compatibility:

While plastic bearings offer excellent chemical resistance to a wide range of substances, they may not be compatible with certain aggressive chemicals or solvents. Some chemicals can cause degradation, swelling, or softening of certain plastic materials, affecting the performance and lifespan of the bearings. In industries where exposure to harsh chemicals is prevalent, it is crucial to select plastic bearings that are specifically designed to withstand the specific chemical environment or consider alternative bearing materials.

  • 5. Abrasion and Wear:

Plastic bearings may be more susceptible to abrasion and wear compared to metal bearings, especially in applications involving abrasive particles or high levels of friction. While plastic bearings are designed to resist wear, prolonged exposure to abrasive conditions can lead to increased wear rates and reduced lifespan. In industries such as mining, construction, or material handling, where abrasive contaminants are present, additional protective measures or alternative bearing materials may be necessary to ensure long-term performance.

  • 6. Application-Specific Considerations:

Each industry has its specific requirements and operating conditions that must be considered when selecting bearings. Factors such as load type, vibration, shock, moisture, and environmental conditions can impact the suitability of plastic bearings. It is essential to evaluate the specific application requirements and consult with bearing manufacturers or industry experts to determine whether plastic bearings can meet the demands of the particular industry.

In summary, while plastic bearings offer many advantages, they also have limitations in specific industries. Temperature limitations, load capacity, speed limitations, chemical compatibility, abrasion and wear susceptibility, and application-specific considerations are important factors to consider when deciding whether plastic bearings are suitable for a particular industry or if alternative bearing materials should be considered.

plastic bearing

How do plastic bearings contribute to reduced friction and noise in machinery?

Plastic bearings play a significant role in reducing friction and noise in machinery. Here’s a detailed explanation of how plastic bearings contribute to these benefits:

  • 1. Low Friction Coefficient:

Plastic bearings are designed to have low friction coefficients, which means they generate less resistance as the bearing surfaces slide or roll against each other. The low friction coefficient of plastic materials, such as PTFE (polytetrafluoroethylene) or nylon, helps minimize the amount of energy required to rotate or move the bearing. This reduction in friction results in several advantages, including lower power consumption, improved efficiency, and reduced wear on the bearing surfaces.

  • 2. Self-Lubricating Properties:

Many plastic bearings have self-lubricating properties, which means they can operate effectively without the need for external lubrication. The plastic materials used in these bearings contain additives or solid lubricants that provide a thin film of lubrication between the bearing surfaces. This self-lubrication minimizes friction and wear, enhances the bearing’s performance, and reduces the need for regular lubrication maintenance. As a result, plastic bearings contribute to smoother operation and lower friction-related noise in machinery.

  • 3. Damping Characteristics:

Plastic materials used in bearings often possess inherent damping characteristics. Damping refers to the ability of a material to absorb or dissipate vibrations and energy. Plastic bearings can effectively absorb vibrations generated during machinery operation, which helps reduce the transmission of vibrations to other parts of the system. This damping effect contributes to a quieter operation by minimizing the noise generated by machinery vibrations.

  • 4. Reduced Metal-to-Metal Contact:

Plastic bearings create a barrier between metal surfaces, reducing direct metal-to-metal contact. This separation prevents or minimizes the occurrence of metal-to-metal friction, which can lead to increased noise levels. The plastic material acts as a cushioning layer, reducing the impact and noise generated by metal components rubbing against each other. By reducing metal-to-metal contact, plastic bearings contribute to quieter machinery operation.

  • 5. Vibration Isolation:

Plastic bearings can help isolate and dampen vibrations within machinery. The elastic and damping properties of plastic materials allow them to absorb and dissipate vibrations, preventing them from propagating throughout the system. By isolating vibrations, plastic bearings help reduce the transmission of vibrations to other parts of the machinery, minimizing noise generation. This vibration isolation contributes to a quieter overall operation.

Overall, plastic bearings offer several advantages that contribute to reduced friction and noise in machinery. Their low friction coefficients, self-lubricating properties, damping characteristics, reduced metal-to-metal contact, and vibration isolation capabilities all work together to minimize energy losses, wear, and noise generation. However, it’s important to consider specific application requirements and consult manufacturers’ guidelines to ensure the appropriate selection and use of plastic bearings for optimal performance in machinery.

China Standard CNC High Performance Peek Plastic Part Products Polyetheretherketone1000 Bearings   connecting rod bearingChina Standard CNC High Performance Peek Plastic Part Products Polyetheretherketone1000 Bearings   connecting rod bearing
editor by CX 2024-05-15

China supplier Natural Color, Black, Earthy Yellow Peek 1000 Polyetheretherketone Aerospace Machinery Peek Plastic Bearings bearing assembly

Product Description

High Performance PEEK Polymer Profiles and Parts Manufacturer and Service Provider

 

Product Description

PEEK(Polyetheretherketone)is a kind of heat-resistant, high performance thermoplastic special engineering plastics. It has good mechanical properties and chemical resistance, abrasion resistance, and hydrolysis resistance properties etc.; it has a light proportion and self-lubricating properties.

 

1. Excellent dimensional stability

2. Low coefficient of linear thermal expansion

3. Good mechanical properties at elevated temperatures

4. Good resistant to hot water and steam

5. Bearing grade PEEK has excellent wear characteristics

6. UL 94 V-0 flammability rating (0.059″ thickness)

7. Very low smoke and toxic gas emissions when exposed to flame

8. Outstanding mechanical properties even at high temperatures
9.Optimized balance of stiffness, tensile strength and impact strength.

10.Continuous operating temperature up to + 260°C and briefly even up to +300°C.

 

GuangZhou Engineering Plastics Industries (Group) Company, has studied and applied this material in many industries for many years. Due to very good processing properties, it can be filled with carbon fiber, Fiberglass and MoS2 etc. In order to improve lubrication performance and mechanical strength further.

 

1.PEEK-1000 This general purpose grade is unreinforced and offers the highest elongation and toughness of all PEEK grades. The newly available black PEEK 1000 is ideal for instrument components where aesthetics are important, as well as for seal components where ductility and inertness are important.

2.PEEK-HPV Carbon fiber reinforced with graphite and PTFE lubricants,our newest grade of PEEK offers the lowest coefficient of friction and the best machinability for all PEEK grades. Anexcellent combination of low friction,low wear,high LPV,low mating part wear and easy machining,make it ideal for aggressive service bearings.

3.PEEK-GF30 The addition of glass fibers significantly reduces the expansion rate and increases the flexural modulus of PEEK. This grade is ideal for structural applications that require improved strength, stiffness or stability,especially at temperatures above 300°F (150°C).

4. PEEK-CA30 The addition of carbon fibers enhances the compressive strength and stffness of PEEK, and dramatically lowers its expansion rate. It offers designers optimum wear resistance and load carrying capability in a PEEK-based product. This grade provides more thermal conductivity than unreinforced PEEK – increasing heat dissipation from bearing surfaces improving bearing life and capability.

 

NO.

Item no.

Unit

PEEK-1000

PEEK-CA30

PEEK-GF30

1

Density

g/cm3

1.31

1.41

1.51

2

Water absorption(23ºC in air)

%

0.20

0.14

0.14

3

Tensile strength

MPa

110

130

90

4

Tensile strain at break

%

20

5

5

5

Compressive stress

(at 2% nominal strain)

MPa

57

97

81

6

Charov impact strength(unnotched)

KJ/m2

No break

35

35

7

Charov impact strength(notched)

KJ/m2

3.5

4

4

8

Tensile modulus of elasticity

MPa

4400

7700

6300

9

Ball indentation hardness

N/mm2

230

325

270

10

Rockwell hardness

M105

M102

M99

Color:Natural,Black,Khaki and so on.

PEEK Sheet Size: 500X1000X(Thickness:1-500mm),620X1000X(Thickness:1-500mm) PEEK Rod Size: Φ6-Φ200X3000mm

PEEK Tube Size: (OD)30-600X (ID)20-500X length(500-3000mm)

 

Our Factory

 

Certification

Companies strictly enforce the ISO9001(2008)international quality certification system, the product quality conforms to the eu RoHS standard.

 

Application Area

1. Seals, Gears, Fittings.
2. Electrical components.
3. Medical instrument parts.
4. Aerospace parts, Valve Seats.
5. Semiconductor machinery components.
6. Food processing machinery components.
7. Bearings and bushings (bearing grade PEEK).
8. Pump and valve components, Wafer Carriers, Piston Rings.

 

Our Exhibition

 

Cooperative Case

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Peek
Transport Package: Boxs
Specification: custom
Trademark: gz-plastic
Origin: China
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

plastic bearing

What is the role of cage design and materials in plastic bearing performance and durability?

The role of cage design and materials in plastic bearing performance and durability is significant. Here’s a detailed explanation:

  • 1. Guidance and Retention:

The primary role of a cage in a plastic bearing is to guide and retain the rolling elements, such as balls or rollers. The cage holds the rolling elements in position, ensuring proper spacing and alignment within the bearing. This guidance and retention function is crucial for maintaining smooth and efficient operation, preventing contact between rolling elements, and distributing loads evenly. The cage design plays a critical role in achieving optimal performance and durability by providing effective guidance and retention of the rolling elements.

  • 2. Load Distribution:

The cage design and materials contribute to the load distribution within the bearing. The cage helps distribute the applied loads evenly to the rolling elements, preventing excessive stress on individual elements and minimizing the risk of premature failure. An efficient cage design ensures that the load is shared appropriately among the rolling elements, maximizing the bearing’s load-carrying capacity and enhancing its durability.

  • 3. Friction and Heat Generation:

The cage design and materials also influence the friction and heat generation within the bearing. A well-designed cage minimizes friction between the rolling elements and the cage itself, reducing energy losses and heat generation. Additionally, the choice of cage material can impact the coefficient of friction and thermal conductivity. Optimal cage materials with low friction and good thermal properties can contribute to improved performance, lower operating temperatures, and increased durability of the plastic bearing.

  • 4. Lubricant Retention:

Certain cage designs are specifically engineered to assist in lubricant retention within the bearing. The cage structure can create pockets or reservoirs that hold and distribute lubricating oil or grease to the rolling elements. This ensures a continuous and adequate supply of lubrication, reducing friction, wear, and the risk of premature failure. Proper lubricant retention facilitated by the cage design is essential for maintaining the performance and durability of plastic bearings.

  • 5. Resistance to Harsh Environments:

The choice of cage material is crucial for ensuring the resistance of plastic bearings to harsh operating environments. Different cage materials offer varying degrees of resistance to chemicals, moisture, temperature extremes, and other environmental factors. Selecting the appropriate cage material that is compatible with the application’s operating conditions is essential to maintain the bearing’s performance and durability over time.

  • 6. Durability and Service Life:

The cage design and materials significantly impact the overall durability and service life of plastic bearings. A well-designed cage that effectively guides and retains the rolling elements, distributes loads evenly, minimizes friction, and retains lubrication contributes to the bearing’s longevity. Additionally, using durable and suitable cage materials that can withstand the operating conditions ensures the bearing’s ability to withstand wear, fatigue, and other forms of degradation, resulting in extended service life.

In summary, the cage design and materials play a crucial role in the performance and durability of plastic bearings. The cage provides guidance, retention, and load distribution for the rolling elements, minimizes friction and heat generation, assists in lubricant retention, ensures resistance to harsh environments, and contributes to the overall durability and service life of the bearing. By considering the appropriate cage design and materials, manufacturers can optimize the performance, reliability, and longevity of plastic bearings in various applications.

plastic bearing

How do innovations and advancements in plastic bearing technology impact their use?

Innovations and advancements in plastic bearing technology have a significant impact on their use across various industries. Here’s a detailed explanation:

  • 1. Enhanced Performance:

Advancements in plastic bearing technology have led to improved performance characteristics. Innovations in materials, manufacturing processes, and design techniques have resulted in plastic bearings that offer enhanced load capacity, reduced friction, improved wear resistance, and increased durability. These advancements allow plastic bearings to be used in a broader range of applications and environments where they previously may have been limited.

  • 2. Expanded Application Range:

The advancements in plastic bearing technology have expanded their application range. With improved performance and the ability to withstand demanding operating conditions, plastic bearings can now be utilized in industries and applications that were traditionally dominated by metal bearings. They can be found in industries such as automotive, food processing, medical devices, electronics, renewable energy, and many others where their unique properties and benefits are highly valued.

  • 3. Cost Savings:

Innovations in plastic bearing technology have brought about cost savings for industries. Plastic bearings often have lower production costs compared to metal bearings, and their lightweight nature can lead to reduced energy consumption in certain applications. Additionally, plastic bearings may eliminate the need for external lubrication, reducing maintenance costs and downtime. These cost-saving advantages make plastic bearings an attractive option for industries seeking efficient and economical solutions.

  • 4. Corrosion and Chemical Resistance:

Advancements in plastic bearing technology have addressed the challenges of corrosion and chemical resistance. Newer plastic materials and formulations offer excellent resistance to a wide range of corrosive substances, acids, solvents, and aggressive chemicals. This makes plastic bearings suitable for industries where exposure to harsh environments or aggressive media is common, such as chemical processing, wastewater treatment, or marine applications.

  • 5. Noise and Vibration Reduction:

Innovations in plastic bearing technology have led to the development of bearings with improved noise and vibration reduction capabilities. This is particularly beneficial in industries where noise and vibration can negatively impact performance, precision, and user comfort. Plastic bearings with advanced designs and dampening properties help minimize noise and vibration, making them suitable for applications such as electric motors, household appliances, or medical equipment.

  • 6. Sustainability and Environmental Considerations:

Advancements in plastic bearing technology have also focused on sustainability and environmental considerations. Newer plastic materials may be recyclable or made from recycled content, reducing the environmental impact. Additionally, plastic bearings often require less lubrication compared to metal bearings, resulting in lower consumption of lubricants and reduced environmental contamination. These sustainable aspects align with the growing demand for eco-friendly solutions in various industries.

In summary, innovations and advancements in plastic bearing technology have a significant impact on their use. These advancements result in enhanced performance, expanded application range, cost savings, improved corrosion and chemical resistance, noise and vibration reduction, and sustainability considerations. As plastic bearing technology continues to evolve, industries can benefit from these advancements by adopting plastic bearings that offer superior performance, reliability, and efficiency in their specific applications.

plastic bearing

How do plastic bearings compare to traditional metal or steel bearings in terms of performance?

When comparing plastic bearings to traditional metal or steel bearings, several factors come into play in terms of performance. Here’s a detailed comparison of plastic bearings and traditional metal or steel bearings:

  • 1. Friction and Wear:

Plastic bearings generally exhibit lower friction coefficients compared to traditional metal or steel bearings. This characteristic results in reduced energy consumption, smoother operation, and less wear on the bearing surfaces. Plastic bearings often have self-lubricating properties, further enhancing their resistance to wear and reducing the need for external lubrication. On the other hand, metal or steel bearings may require regular lubrication to maintain optimal performance and prevent excessive wear.

  • 2. Corrosion Resistance:

Plastic bearings offer excellent resistance to corrosion, making them particularly suitable for applications in moist or corrosive environments. Unlike metal or steel bearings, plastic bearings do not rust or corrode, allowing them to maintain their performance and integrity over time. Metal or steel bearings, while often treated with protective coatings, may still be susceptible to corrosion if the coating is compromised or in aggressive operating conditions.

  • 3. Load Capacity:

Traditional metal or steel bearings generally have higher load-carrying capacities compared to plastic bearings. Metal bearings are known for their high strength and ability to withstand heavy loads and shock forces. Plastic bearings, although continuously improving in this aspect, may have lower load-carrying capacities and are typically more suitable for moderate load applications. It is important to carefully evaluate the specific load requirements of the application when considering plastic bearings.

  • 4. Temperature Range:

Metal or steel bearings typically have a broader temperature range compared to plastic bearings. While plastic bearings can operate effectively within specific temperature limits, exposure to extreme temperatures can affect their performance. Certain plastic materials, such as PEEK, offer higher-temperature resistance, but they may still have limitations compared to metal or steel bearings, which can handle a wider range of temperatures.

  • 5. Noise and Vibration:

Plastic bearings possess inherent damping properties, which can help reduce noise levels and vibrations in machinery and equipment. The ability of plastic materials to absorb vibrations contributes to a quieter and smoother operation. Metal or steel bearings, although effective in many applications, may produce more noise and vibrations due to their higher rigidity and less damping characteristics.

  • 6. Cost and Maintenance:

Plastic bearings can offer cost advantages over metal or steel bearings in certain situations. Plastic bearings often have lower material and production costs, which can contribute to overall cost savings. Additionally, plastic bearings can require less maintenance due to their self-lubricating properties, resistance to corrosion, and reduced wear. Metal or steel bearings may require more frequent lubrication, inspection, and replacement, which can increase maintenance costs and downtime.

It’s important to note that the performance of plastic bearings and traditional metal or steel bearings can vary depending on the specific application requirements. While plastic bearings excel in certain areas such as corrosion resistance, low friction, and noise reduction, metal or steel bearings may be more suitable for high-load or high-temperature applications. Engineers and designers should carefully evaluate the performance characteristics of both types of bearings and consider the specific needs of the application to determine the most appropriate choice.

China supplier Natural Color, Black, Earthy Yellow Peek 1000 Polyetheretherketone Aerospace Machinery Peek Plastic Bearings   bearing assemblyChina supplier Natural Color, Black, Earthy Yellow Peek 1000 Polyetheretherketone Aerospace Machinery Peek Plastic Bearings   bearing assembly
editor by CX 2024-05-03

China factory 6800 Series Plastic Bearing Deep Groove Ball Bearing 10X19X5mm 6800 Peek Bearing bearing engineering

Product Description

DETA

 

ZheJiang Leicester Bearing Technology Co., Ltd. is a specialized manufacturer that produces various types of bearings, including cylindrical roller bearings (7 series, 97 series, 3007 series, 20097 series), British standard tapered roller bearings, deep groove ball bearings, spherical plain bearings, self-aligning roller bearings, rolling mill bearings, and a variety of non-standard bearings.
At our core, we believe in “Quality, Creating Value,” and we have gained the trust and support of customers both domestically and internationally by delivering high-quality products.
In 2002, we received certification from the China Import and Export Product Quality Verification Center and obtained ISO 9001, ISO 2000, and IATF 16949 quality management system certifications. Our successful collaborations with renowned domestic and international enterprises have made us reliable and stable suppliers. Moreover, we have provided bearing components to well-known bearing manufacturers worldwide.

 

PRODUCT OVERVIEW

Eaaring No      Di
  d  
mension
(mm)
   B
Mass(kg) Bearing No DI
  d  
mension 
D
 (mm)
     B
Mass(kg)
  604 4 12   4.0     6212 60 110    22   0.780
  606 6 17   17.0     6213 65 120    23   0.990
  608   22   7.0 0.0080   8214 70 125    24   1.050
  623 3 10   4.0 0.571   6215 75 130    25   1.200
  625 5 16   5.0 0.0050   6216 80 140    26   1.400
  634 4 16   5.0 0.0050   6217 85 150    28   1.800
  635 5 19   6.0 0.0080   6218 90 160    30   2.150
  680 9 22   7.0     6219 95 170    32   2.600
  618/3 3 7   2.0 0.0003   6220 100 100    34   3.150
  618/4 4 9   2.5 0.0006   6221 105 190    36 00
   618/5 5 11   3.0 0.0120   6222 10 200     38   4.350
  6000 10 26   8.0 0.0190   6300 10  35    11   0.053
  6001 12 20   8.0 0.5710   6301 12  37    12   0.060
  6002 15 32   9.0 0.0300   6302 15  42    13   0.082
  6003 17 35   10.0 0.0390   6303 17  47    14   0.120
  6004 20 42   120 0.0690   6304 20  52    15   0.140
  6005 25 47   12.0 0.0800   6205 25  62    17   0.230
  6006 30 55   13.0 0.1200   6306 30  72    19 0.3680
  6007 35 62   14.0 0.1600   6207 35  80    21 0.460
  6008 40 68   15.0 0.1900   6309 40  90    23 0.630
  6009 45 75   16.0 0.2500   6309 45  100    25 0.830
   6571 50 80   16.0 0.2600   6310 50   110     27 1.050
  6011 55 90   18.0 0.3000   6311 55  120    29 1.350
  6012 0 96   18.0 0.4200   6312 60  130    31 1.700
  6013 65 100   18.0 0.4400   6313 65  140    33 2.100
  6014 70 110   20.0 0.6000   6314 70  150    35 2.500
  6015 75 115   20.0 0.6400   6315 75  160    37 3.000
  6016 80 120   22.0 0.8500   6316 80  170    39 3.600
  6017 85 130   22.0 0.8900   6217 85  180    41 4.260
  6018 90 140   24.0 1.1500   6318 90  190    43 4.900
  6019 95 145   24.0 1.2000   6319 95  200    45 5.650
  6571 100 150   24.0 1.2500   6320 100  215    47 7.000
  6571 105 160   26.0 16,000    6401 12  42    13 0.048
   6571 110 170   28.0 1.9500   6402 15   52     15 0.137
  6200 10 30   9.0 0.0320   6403 17  62    17 0.271
  850 12 32   10.0 0.571   6404 20  72    19 0.408
  6202 15 35   11.0 0.0450   6405 25  80    21 0.528
  6203 17 40   12.0 0.0650   6406 30  90    23 0.720
  6204 20 47   14.0 0.1100   6407 35  100    25 0.936
  6205 25 52   15.0 0.1300   6408 40  110    27 1.200
  6206 30 62   16.0 0.2000   6409 45  120    28 1.550
  6207 35 72   17.0 0.2900   6410 50  130    31 1.910
  6208 40 80   18.0 0.3700   6411 55  140    33 2.320
  6209 45 85   19.0 0.4100   6412 60  150    35 2.790
  6210 0 90   20.0 0.4600   6413 65  160    37 3.360
   6211 55 100   21.0 0.6100   6414 70   180     42 5.000
      “Aval  lable  typas:apan,Z.ZZ,RS;2RS,N,ZN

Deep groove ball bearings are the most representative of rolling bearings, with simple structure, They are easy to use and versatile .
Such bearings are non-separabal bearings,the inner and outer rings are rolled into a ditch arc type. They can bear radial load and axial load,with low coefficient of friction,high limiting speed .They are suitable for high-spped,low noise ,low vibration cccasions.
Deep groove balll bearings are widely used in auto-mobiles,machinetools,motors,instrumentation,construction machinery,railway vehicles,agricultural machinery and various equipment in machinery industry.

 

Detailed Photos

 

OUR PRODUCTS

 

SCOPE OF APPLICATION

PRODUCTION PROCESS

PRODUCT PACKAGING

1.industrial packing+industrial cartons+pallets

2.single brand box+brand cartons+pallets

3.follow customer’s requests

A.Plastic Tubes or Single Boxes ( Usually 10pcs in 1 plastic tube for steel bearings);

B.Cartons ( No more than 30kg for 1 carton );

C. Pallet ( Usually more than 400kg totally will use pallet )

D. Delivery time :7-35 days ( by sea or by air )  

Generally,We will choose the most suitable packing method for products. If you have any special requirements for packing, please contact us in advance.

Company Profile

“Reliable quality, competitive prices, and excellent service” have always been our guiding principles. We have implemented a stringent quality control system, starting from raw material procurement to product manufacturing. Our company boasts a strong technical team, well-equipped testing facilities, and a robust ability to develop new products. With a commitment to delivering high-quality products and maintaining a good reputation, we aim to earn the trust of more customers.
ZheJiang Leicester Bearing Technology Co., Ltd. warmly welcomes both new and existing customers for discussions, guidance, and collaboration. We are eager to establish direct sales partnerships with businesses in various industries, both within the country and internationally.
As we embrace our dreams and uphold our values, honesty remains the foundation of our company. ZheJiang Leicester Bearing Technology Co., Ltd. looks forward to creating a bright future together with you!

OUR STRENGTHS

Q1: Can I get some samples?

A: Yes, sample order is available for quality check and market test. But you have to pay the sample cost and express cost.

Q2: Do you receive customized order?

A: Yes, ODM & OEM are welcomed.

Q3: What’s the lead time?

A: According to the order quantity, small order usually need 3-5 days, big order need negotiation.

Q4: What’s your payment terms?

A: We receive Escrow, T/T, West Union, Cash and etc.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Model No.: Main Product Deep Groove Ball Bearing
Deliver Time: 0-15days
Transport: by Land or Sea or Air
Samples:
US$ 0.1/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

plastic bearing

Are there specific considerations for choosing plastic bearings in applications with high-speed or high-temperature requirements?

Yes, there are specific considerations for choosing plastic bearings in applications with high-speed or high-temperature requirements. Here’s a detailed explanation:

  • 1. High-Speed Considerations:

When selecting plastic bearings for high-speed applications, several factors need to be considered:

  • a. Material Selection:

The choice of plastic material is crucial for high-speed applications. Certain plastics, such as PEEK (Polyether Ether Ketone) or PTFE (Polytetrafluoroethylene), offer excellent mechanical properties and low friction characteristics, making them suitable for high-speed operation. These materials have good dimensional stability, high strength, and low coefficients of friction, which minimize heat generation and reduce the risk of premature failure at elevated speeds.

  • b. Cage Design:

The cage design plays a vital role in high-speed applications. A cage with low mass and optimal geometry can reduce centrifugal forces and minimize the risk of cage instability or cage-to-rolling-element contact at high speeds. Cages with designs that promote efficient lubricant distribution and minimize friction are also beneficial for high-speed operation.

  • c. Lubrication:

Proper lubrication is critical for high-speed applications. The lubricant helps reduce friction, dissipate heat, and provide a protective film between the rolling elements and the bearing surfaces. Synthetic lubricants with high viscosity index and low evaporation rates are typically used in high-speed plastic bearings to ensure sufficient lubrication and reduce the risk of lubricant breakdown or loss at elevated speeds.

  • d. Temperature Control:

High-speed applications can generate significant heat due to friction and internal forces. Adequate temperature control measures, such as cooling systems or heat dissipation techniques, should be considered to prevent excessive heat buildup. The selection of plastic materials with good thermal conductivity and resistance to temperature extremes can also help in managing high temperatures in high-speed applications.

  • 2. High-Temperature Considerations:

When choosing plastic bearings for high-temperature applications, the following factors should be taken into account:

  • a. Temperature Resistance:

Plastic materials exhibit varying degrees of temperature resistance. It is essential to select plastic bearings made from materials that can withstand the anticipated operating temperatures without significant degradation or loss of mechanical properties. High-temperature plastics such as PEEK, PPS (Polyphenylene Sulfide), or PI (Polyimide) are commonly used in applications with elevated temperatures.

  • b. Lubrication:

Choosing the right lubricant is crucial for high-temperature applications. Lubricants with high-temperature stability and resistance to oxidation are required to ensure effective lubrication and prevent lubricant breakdown or evaporation at elevated temperatures. Specialized high-temperature lubricants, such as synthetic oils or greases, are commonly used in plastic bearings for high-temperature applications.

  • c. Clearance and Expansion:

Plastic materials can exhibit thermal expansion properties that differ from metals. It is important to consider the coefficient of thermal expansion of the plastic bearing and its components to ensure proper clearance and prevent interference or binding at high temperatures. The selection of materials and the design of the bearing should account for the anticipated thermal expansion to maintain optimal performance and prevent damage.

  • d. Ventilation and Heat Dissipation:

High-temperature applications require adequate ventilation and heat dissipation mechanisms to prevent excessive heat buildup. The design of the equipment or machinery housing should facilitate proper airflow and heat transfer to maintain the bearing’s temperature within acceptable limits. Additionally, incorporating cooling systems or heat sinks may be necessary in extreme high-temperature conditions.

In summary, choosing plastic bearings for high-speed or high-temperature applications requires careful consideration of factors such as material selection, cage design, lubrication, temperature resistance, clearance and expansion, and heat dissipation. By taking these specific considerations into account, manufacturers can ensure the optimal performance, reliability, and durability of plastic bearings in applications with high-speed or high-temperature requirements.

plastic bearing

Can you provide examples of machinery or equipment that rely on precision plastic bearings for efficient operation?

Precision plastic bearings are essential components in numerous machinery and equipment where efficient and reliable operation is crucial. Here are some examples of machinery and equipment that rely on precision plastic bearings:

  • 1. Robotics and Automation Systems:

Precision plastic bearings are widely used in robotics and automation systems. These bearings provide smooth and precise movement in robotic arms, linear actuators, and automated assembly lines. They contribute to accurate positioning, repeatability, and high-speed operation, ensuring efficient and reliable performance in various industrial automation applications.

  • 2. CNC Machines and Machine Tools:

CNC machines and machine tools, such as milling machines, lathes, and routers, rely on precision plastic bearings for smooth and accurate motion control. These bearings are used in linear guides, spindles, and ball screw assemblies. Precision plastic bearings enable precise positioning, reduce backlash, and contribute to high machining accuracy and efficiency.

  • 3. Printing and Packaging Machinery:

Precision plastic bearings play a critical role in printing and packaging machinery. They are used in printing presses, label applicators, packaging equipment, and converting machines. These bearings provide smooth rotation and linear motion in rollers, guides, and feed systems. They help maintain precise registration, reduce downtime, and ensure efficient production in the printing and packaging industry.

  • 4. Semiconductor and Electronics Manufacturing:

Precision plastic bearings are integral to semiconductor and electronics manufacturing equipment. They are used in wafer processing machines, pick-and-place machines, wire bonders, and inspection systems. These bearings contribute to precise positioning, smooth motion, and low particulate generation, ensuring efficient and reliable manufacturing processes in the semiconductor and electronics industry.

  • 5. Optical and Imaging Systems:

Precision plastic bearings are found in optical and imaging systems, including cameras, scanners, microscopes, and telescopes. They provide smooth and stable movement in lens focusing mechanisms, stage positioning systems, and image stabilization mechanisms. Precision plastic bearings help achieve sharp and clear imaging, precise measurements, and efficient optical system operation.

  • 6. Medical and Laboratory Equipment:

Precision plastic bearings are critical components in medical and laboratory equipment. They are used in centrifuges, pipetting systems, diagnostic devices, and analytical instruments. These bearings offer low friction, precise motion control, and resistance to chemicals and sterilization processes. Precision plastic bearings contribute to accurate sample handling, reliable test results, and efficient operation in medical and laboratory settings.

These examples highlight the diverse range of machinery and equipment that rely on precision plastic bearings for efficient operation. Precision plastic bearings are also used in textile machinery, aerospace systems, measuring instruments, and other applications where precise motion control, low friction, and reliable performance are essential.

plastic bearing

How do plastic bearings compare to traditional metal or steel bearings in terms of performance?

When comparing plastic bearings to traditional metal or steel bearings, several factors come into play in terms of performance. Here’s a detailed comparison of plastic bearings and traditional metal or steel bearings:

  • 1. Friction and Wear:

Plastic bearings generally exhibit lower friction coefficients compared to traditional metal or steel bearings. This characteristic results in reduced energy consumption, smoother operation, and less wear on the bearing surfaces. Plastic bearings often have self-lubricating properties, further enhancing their resistance to wear and reducing the need for external lubrication. On the other hand, metal or steel bearings may require regular lubrication to maintain optimal performance and prevent excessive wear.

  • 2. Corrosion Resistance:

Plastic bearings offer excellent resistance to corrosion, making them particularly suitable for applications in moist or corrosive environments. Unlike metal or steel bearings, plastic bearings do not rust or corrode, allowing them to maintain their performance and integrity over time. Metal or steel bearings, while often treated with protective coatings, may still be susceptible to corrosion if the coating is compromised or in aggressive operating conditions.

  • 3. Load Capacity:

Traditional metal or steel bearings generally have higher load-carrying capacities compared to plastic bearings. Metal bearings are known for their high strength and ability to withstand heavy loads and shock forces. Plastic bearings, although continuously improving in this aspect, may have lower load-carrying capacities and are typically more suitable for moderate load applications. It is important to carefully evaluate the specific load requirements of the application when considering plastic bearings.

  • 4. Temperature Range:

Metal or steel bearings typically have a broader temperature range compared to plastic bearings. While plastic bearings can operate effectively within specific temperature limits, exposure to extreme temperatures can affect their performance. Certain plastic materials, such as PEEK, offer higher-temperature resistance, but they may still have limitations compared to metal or steel bearings, which can handle a wider range of temperatures.

  • 5. Noise and Vibration:

Plastic bearings possess inherent damping properties, which can help reduce noise levels and vibrations in machinery and equipment. The ability of plastic materials to absorb vibrations contributes to a quieter and smoother operation. Metal or steel bearings, although effective in many applications, may produce more noise and vibrations due to their higher rigidity and less damping characteristics.

  • 6. Cost and Maintenance:

Plastic bearings can offer cost advantages over metal or steel bearings in certain situations. Plastic bearings often have lower material and production costs, which can contribute to overall cost savings. Additionally, plastic bearings can require less maintenance due to their self-lubricating properties, resistance to corrosion, and reduced wear. Metal or steel bearings may require more frequent lubrication, inspection, and replacement, which can increase maintenance costs and downtime.

It’s important to note that the performance of plastic bearings and traditional metal or steel bearings can vary depending on the specific application requirements. While plastic bearings excel in certain areas such as corrosion resistance, low friction, and noise reduction, metal or steel bearings may be more suitable for high-load or high-temperature applications. Engineers and designers should carefully evaluate the performance characteristics of both types of bearings and consider the specific needs of the application to determine the most appropriate choice.

China factory 6800 Series Plastic Bearing Deep Groove Ball Bearing 10X19X5mm 6800 Peek Bearing   bearing engineeringChina factory 6800 Series Plastic Bearing Deep Groove Ball Bearing 10X19X5mm 6800 Peek Bearing   bearing engineering
editor by CX 2024-04-30